Эластичность спроса по цене (онлайн ритейл)

Эластичность спроса по цене (Price elasticity of demand – PED) измеряет реакцию спроса товара на изменение его цены. Она рассчитывается как процентное изменение спроса, деленное на процентное изменение цены. Если спрос эластичен, небольшое изменение цены приводит к большому изменению объема продаж.

Оглавление

Определение и формула

Эластичность спроса по цене (Price elasticity of demand – PED) измеряет реакцию спроса товара на изменение его цены. Она рассчитывается как процентное изменение спроса, деленное на процентное изменение цены. Если спрос эластичен, небольшое изменение цены приводит к большому изменению объема продаж. Таким образом эластичность спроса по цене характеризует способность покупателей отказаться от товара (или заменить на другой товар) в ответ на повышение цены. Формула эластичности спроса по цене:

Приведенная выше формула обычно дает отрицательное значение из-за обратного характера отношения между ценой и количеством спроса.

 

По мере того, как разница между двумя ценами или количествами увеличивается, точность PED, определяемая приведенной выше формулой, уменьшается по двум причинам. Во-первых, эластичность товара не обязательно постоянна, она изменяется в разных точках кривой спроса из-за своего процентного характера. Во-вторых, процентные изменения несимметричны; вместо этого процентное изменение между любыми двумя значениями зависит от того, какое из них выбрано как начальное, а какое как конечное.

Ценовая эластичность применяется в компаниях в основном для ценообразования. При умелом использовании ценовой эластичности можно добиться повышения выручки и прибыли компании при сохранении лояльности покупателей.

 

Пример:

 

У вас есть интернет-магазин, в котором вы продаёте электронику. Для примера возьмём 2 товара: сотовый телефон по цене 100 $ и умные часы, которые тоже по цене 100 $.

 

Если цена на телефон увеличивается cо 100 $ до 110 $, а объем спроса при этом уменьшается с 20 до 19 шт., то эластичность:

 

При вычислении эластичности спроса важно определиться с исходной точкой отсчёта цены и продаж, т.к. относительно этих данных будут рассчитываться проценты изменений цены и продаж. Так например для смарт-часов, если объем спроса увеличивается с 20 до 25 единиц, процентное изменение составляет (25-20)÷20=25%. Но если объем спроса снизится с 25 единиц до 20 единиц, процентное изменение составит (20-25) ÷ 25= -20%.

 

Перекрёстная эластичность спроса по цене — процентное изменение спроса в ответ на изменение в цене конкурентного товара или услуги. Перекрёстная эластичность спроса по цене почти всегда положительна, т.к. при повышении цены на товар покупатели переключаются на конкурентный товар повышая его продажи.

Наклон кривой спроса по цене

Частой ошибкой является путать наклон кривой спроса с ее эластичностью. Наклон — это скорость изменения единиц измерения вдоль кривой и вычисляется по формуле:
На рисунке ниже для смарт-часов и для сотового телефона наклон является постоянным. Если цена на телефон увеличивается со 100 $ до 110 $, а объем спроса при этом уменьшается с 20 до 19 шт., тогда наклон равен:
График кривой спроса выглядит так:
Ценовая эластичность спроса и наклон кривой спроса по цене почти всегда отрицательны, так как цена и количество спроса движутся в противоположных направлениях. Поэтому когда мы будем говорим об абсолютных значениях эластичности как о положительных числах, то будем для удобства называть это абсолютным значением эластичности.

Факторы влияющие на эластичность

Есть большое количество факторов, которые оказывают влияние на эластичность спроса:
  • Жизненная необходимость. Эластичность спроса ниже на товары первой необходимости, чем на товары избыточного потребления. Например эластичность спроса на хлеб ниже чем на сотовые телефоны.
  • Абсолютная цена на товар. На товары с низкой ценой эластичность спроса будет ниже чем на товары с высокой ценой, т.к. товары с высокой ценой занимают большую долю в корзине покупателя. Вы например вряд ли будете переживать, если на какой-то товар который вы покупаете по 1 штуке в неделю цена выросла с 80 до 90 центов.
  • Цена на конкурентные товары. Если цена на товар превысит цену аналогов, то спрос будет резко снижаться.
  • накладные расходы. Например в вашем магазине все цены устраивают покупателя, кроме цены на один конкретный товар. Но ехать и покупать его отдельно не имеет смысла, т.к. накладные расходы на покупку одного товара слишком велики. В таком случае спрос на товар будет неэластичным. Именно по этой причине спрос на товары в онлайн-магазинах намного эластичнее чем офлайн, ведь перейти на другой сайт чтобы купить этот же товар у конкурента почти ничего не стоит.
Изменения в ценах на самом деле могут иметь большее влияние в долгосрочной перспективе, чем в краткосрочной. Например, если в офлайн магазине цену на хлеб повысить на 50%, в краткосрочной перспективе покупатели будут продолжать его покупать. Однако это побуждает покупателей начать искать альтернативу, и при первой возможности он переключится на другого продавца. Следовательно, Повышение прибыли в краткосрочной перспективе может быть стимулом уменьшения прибыли в долгосрочной перспективе.

Ценовая эластичность и выручка

Фирма, рассматривающая изменение цены, должна знать, какое влияние изменение цены окажет на общий доход (выручку). Выручка — это просто произведение количества проданных единиц на цену единицы товара.
Предельная выручка — дополнительный доход, получаемый от производства дополнительной единицы продукции. Её формула выглядит так:
58b035e5 63e8 0e05 88f8 9b867e46b923 540x70 - Эластичность спроса по цене (онлайн ритейл)
Желательно найти точку при которой выручка максимальна. Повышение цены ведёт к снижению продаж, эти два фактора противоположным образом влияют на выручку. На графике ниже эффект снижения выручки обозначен красным прямоугольником, а эффект повышения выручки обозначен зелёным прямоугольником. Максимум выручки достигается когда площади этих прямоугольников становятся равны при переходе от текущей цены к новой. Абсолютное значение эластичности как раз и показывает соотношение площадей этих прямоугольников.
Как видно из графика ниже начиная с какого-то момента выручка при повышении цены начинает падать. Таким образом очень высокая цена также как и очень низкая цена ведут к низкой выручке. Но при более низкой эластичности спроса, продавцу становится выгоднее повышать цену для максимизации выручки. У товара 2 абсолютное значение эластичности меньше чем у товара 1, вследствие у товара 2 цена для достижения максимальной выручки выше чем у товара 1. При этом максимум выручки достигается при абсолютном значении эластичности равном 1.
Правило, что делать для получения максимальной выручки можно проще записать в таком виде:

Ценовая эластичность для ценообразования на практике

На практике есть несколько сложностей при применении эластичности в ценообразовании:

  • Кривая зависимости продаж от цены имеет сложную нелинейную форму из-за присутствия конкурентных товаров с конкретной ценой, из-за насыщения спроса, из-за например срока годности для продуктов питания и т.д.
  • В текущий момент мы не знаем форму этой кривой полностью, т.к. в исторических продажах у нас есть только продажи при узком диапазоне изменения цены. А в некоторых случаях может быть, что товар всегда продавался при одной и той же цене и тогда мы вообще не знаем его эластичность даже в текущей точке.
  • Эту кривую трудно строить, т.к. все вышеуказанные выше графики предполагают что все остальные факторы остаются неизменными. Но в реальности если вы захотите поменять цену и посмотреть эластичность товара, то вам будет мешать одновременное изменение других факторов. Например вы в пятницу снизили цену на смарт-часы на 10%, и в субботу ваши продажи выросли на 12%. Но они выросли на 12% из-за снижения цены или из-за того что в каждую субботу у вас и так растут продажи, а может быть из-за того что субботу была предпраздничным днём?
  • Форма кривой эластичности с течением времени меняется, и для некоторых товаров это может происходить довольно быстро. Например для модной одежды или для бытовой электроники, когда их сменяют товары следующего поколения.

По всем вышеуказанным причинам на практике сейчас широко применяется машинное обучение для применения эластичности цены в ценообразовании. С его помощью например можно восстановить форму кривой эластичности товара по данным схожих товаров.

 

Для расчёта эластичности спроса по цене в Excel можно применить уравнение =linest(known_y’s; known_x’s, …)/SalesCur*PriceCur. Где known_y’s — это ваши исторические продажи, а known_x’s — это ваши цены для этих продаж. В итоге применения вы получите коэффициент, который показывает, на сколько единиц изменятся ваши продажи при повышении цен на 1 единицу. Например, если вы указали исторические продажи в штуках за 1 день и цены указали в долларах, то коэффициент -1.2 будет означать, что при повышении цены на 1 доллар ваши продажи уменьшатся на 1.2 штуки в день. Однако будьте осторожны, перед применением этой формулы убедитесь что:

  • у вас есть достаточно статистики продаж для каждого уровня цены (если период замера продаж 1 день, то не менее 7 дней подряд)
  • продажи были значительными (если период замера продаж 1 день, то не менее 10 штук в день)
  • изменения цен были ощутимыми (не менее 5%, и не менее 10% для дешёвых товаров).

Например если вы продавали какой-то товар за 20 евро, то желательно чтобы у вас была информация:

  • 7 дней продаж не менее 10 штук в день при цене 19 евро
  • 7 дней продаж не менее 10 штук в день при цене 20 евро
  • 7 дней продаж не менее 10 штук в день при цене 21 евро

В противном случае слишком большую роль может сыграть эффект случайности. Также постарайтесь избежать экспериментов по выяснению эластичности спроса в праздничные дни и дни больших колебаний продаж сезонных товаров.

 

Также применяется тактика постоянных небольших изменений цен, для дальнейшего уточнения кривой эластичности в близком диапазоне.

Использование машинного обучения для расчёта эластичности

Эластичность спроса применяется для задач ценообразования, прогнозирования спроса, максимизации выручки. Чаще всего это решается с помощью применения моделей машинного обучения которые выявляют зависимость продаж от различных факторов: цены, дня недели, погоды, и т.д. Наиболее распространёнными моделями для таких задач являются:
  • Модели на основе деревьев принятия решения
  • Модели на основе линейной регрессии
  • Модели на основе нейронных сетей
Выбор модели зависит от многих факторов, также у каждой модели есть свои плюсы и минусы, например:
  • Если исходных данных мало, то стоит применять более простые модели, например линейную модель.
  • Если необходимо экстраполировать зависимость продаж от цены (то есть предположить продажи при цене большей чем когда либо была в истории), то Модели на основе деревьев принятия решения не подходят для такого рода задач. т.к. они не предназначены для экстраполяции зависимостей
  • Если исходные данные сильно зашумлены, зависимость нелинейна и исходных данных немного, то наоборот стоит попробовать Модели на основе деревьев принятия решения
  • Если необходимо более точно вычислить зависимость продаж от цены и достаточно исходных данных, то стоит применить Модели на основе нейронных сетей
В случае линейной модели вы получите зависимость продаж от факторов например такого вида:
Получив такую модель вы можете зафиксировать все остальные факторы кроме цены, и нарисовать график зависимости продаж от цены в интересующем вас диапазоне цен. То есть методы машинного обучения позволяют очистить зависимость «продажи-цена» от остальных шумовых факторов и тем самым получить более точный коэффициент зависимости. Далее получив этот график и коэффициент можно вычислить эластичность спроса по цене для решения задачи ценообразования. Далее можно также максимизировать выручку получив для неё реальные графики в зависимости от цены. Если предположить, что зависимость линейная как в приведённой выше формуле, то выручка будет максимальной при цене:

Почитать еще

blog min 7 177x142 - Эластичность спроса по цене (онлайн ритейл)
Инструменты интеграции данных

Инструменты интеграции данных предназначены для широкого спектра сценариев использования, которые зависят от основных возможностей доставки

maxresdefault 177x142 - Эластичность спроса по цене (онлайн ритейл)
TIBCO Spotfire 11.0

Spotfire 11.0 представляет Spotfire Mods — легкий облачный фреймворк для создания новых интерактивных типов визуализаций, позволяющий создавать

Несколько видео о наших продуктах

085 - Эластичность спроса по цене (онлайн ритейл)
Проиграть видео
Презентация аналитической платформы Tibco Spotfire
106 - Эластичность спроса по цене (онлайн ритейл)
Проиграть видео
Отличительные особенности Tibco Spotfire 10X
1 11 - Эластичность спроса по цене (онлайн ритейл)
Проиграть видео
Как аналитика данных помогает менеджерам компании
2021-03-09T11:31:13+02:00