Методология 6 сигм

Шесть сигма – хорошо структурированная методология управления данными, различных областях производства, сфере услуг, менеджмента и другой деловой активности. Технология “шесть сигма” базируется на хорошо изученных и апробированных статистических методах контроля качества, анализа данных и систематическом тренинге всего персонала на фирме, вовлеченного в деловую активность или процесс, который получил статус “процесс шесть сигма”.

Оглавление

6 сигм

Шесть сигма – хорошо структурированная методология управления данными, различных областях производства, сфере услуг, менеджмента и другой деловой активности. Технология “шесть сигма” базируется на хорошо изученных и апробированных статистических методах контроля качества, анализа данных и систематическом тренинге всего персонала на фирме, вовлеченного в деловую активность или процесс, который получил статус “процесс шесть сигма”.

sixsigmacalculator - Методология 6 сигм

Рис. 1. Калькулятор Шесть Сигма

Методология “шесть сигма” и стратегия менеджмента обеспечивают надежную основу для организации корпоративного контроля качества. В последние годы интерес к “шесть сигма” значительно вырос, поскольку появилось множество примеров успешного внедрения подхода как на предприятиях США, так и в Европе.

 

Процесс “шесть сигма” обеспечивает всего лишь 3.4 дефекта на 1 миллион произведенных деталей. Достижение подобных результатов является целью, заложенной в концепцию “шесть сигма”. Подобные улучшения не могут произойти без внесения изменений во все аспекты деловой активности, связанные с реформируемым процессом. Именно поэтому программы по внедрению методологии “шесть сигма” обращают особое внимание на предварительную подготовку персонала на предприятии.

 

Основная идея концепции может быть проиллюстрирована следующим образом:

 

Рассмотрим процесс, в котором распределение отклонений от среднего значения предполагается нормальным и контрольные пределы установлены на интервалах 3*сигма (такой процесс носит название “процесс три сигма”).

pic1 - Методология 6 сигм

Рис. 2. Нормальный процесс распределения отклонений

Далее, предположим, что процесс отклонился от прежнего среднего на 1.5 сигма:

pic2 - Методология 6 сигм

Рис. 3. Отклонение процесса от прежнего среднего на 1.5 сигма

Предположим, что мы произвели один миллион деталей и хотим подсчитать их число, оказавшееся за верхним контрольным пределом. На рисунке это закрашенная область под графиком распределения процесса:

pic3 - Методология 6 сигм

Рис. 4. Заштрихованная область – число деталей, оказавшихся за верхним контрольным пределом

Для процесса “три сигма” число деталей вне контрольного предела будет 66.807 (для реального процесса на практике, конечно, такая точность не будет достигаться, но порядок величины будет сохраняться).

pic4 - Методология 6 сигм

Рис. 5. Заштрихованая область – число деталей вне контрольного предела 66,807

Для процесса “четыре сигма”, контрольные пределы для которого установлены на 4*сигма от средней линии, число “бракованных” деталей будет 6.210.

pic6 - Методология 6 сигм

Рис. 6. Заштрихованная область – число “бракованных” деталей для процесса “четыре сигма”

Для процесса “шесть сигма” мы обнаружим всего 3.4 детали, которые оказались вне верхнего контрольного предела:

pic7 - Методология 6 сигм

Рис. 7. Для процесса “Шесть Сигма” 3, 4 бракованных детали

Термин “шесть сигма” произошел от стремления добиться такой дисперсии для процесса, чтобы ± 6 сигма уложилось в интервале от нижнего контрольного предела до верхнего.

 

В этом случае, если даже смещение процесса достигнет 1.5 сигма, то число дефектов будет все равно очень низким. Причины смещения могут быть разными и зависеть от многих факторов на производстве. Значение 1.5 для смещения тоже не было взято случайно.

 

Корпорация Моторола, которая считается одним из пионеров успешного внедрения концепции “шесть сигма”, в результате тщательного исследования дала заключение о том, что со временем даже хорошо отрегулированный процесс может давать сдвиги в среднем значении до 1.5 сигма.

 

В проиллюстрированном выше примере мы предположили сдвиг в направлении верхнего контрольного предела. Для нижнего контрольного предела ситуация будет аналогичной.

 

Отметим, что часто на производстве не рассматривают один из концов нормального распределения, поскольку из-за особенностей технологии важен лишь один из контрольных пределов.

 

Например, при заточке болта большие значения его толщины являются не таким страшным браком, как слишком маленькие, поскольку брак можно исправить, если повторной заточкой уменьшить толщину (в то же время слишком маленькая толщина окончательно бракует деталь).

 

Другим примером может служить число покупателей в магазине – если их слишком мало, то это плохо, но если вдруг наблюдается всплеск активности, то это достаточно приятное событие для владельца.

Почитать еще

073119 pic1 177x142 - Методология 6 сигм

Машинное обучение

Глубокое обучение – это продвинутая форма машинного обучения. Глубокое обучение относится к способности компьютерных систем, известных

9d39cc 177x142 - Методология 6 сигм

Выборка. Типы выборок

Суммарная численность объектов наблюдения (люди, домохозяйства, предприятия, населенные пункты и т.д.), обладающих определенным набором признаков

lend 500 269 177x142 - Методология 6 сигм

Обзор основных видов сегментации

Загрузить программу ВІ Демонстрации решений Аналитика бизнеса Оглавление Сегментация бренда Сегментация помогает принимать более эффективные

Несколько видео о наших продуктах

085 - Методология 6 сигм
Проиграть видео
Презентация аналитической платформы Tibco Spotfire
106 - Методология 6 сигм
Проиграть видео
Отличительные особенности Tibco Spotfire 10X
1 11 - Методология 6 сигм
Проиграть видео
Как аналитика данных помогает менеджерам компании
2021-02-15T20:20:01+02:00